

SpO₂ Monitoring Pulse Oximeter Accuracy Study

Nihon Kohden commissioned the studies to evaluate Nihon Kohden pulse oximeter and probes as below. The following document is a summarized version of the report from those studies, created by Nihon Kohden Corporation. This document has been reviewed and approved by the investigators.

Evaluation Date	Principal Investigator	Laboratory
March 12-13 and April 16, 2008	John R. Feiner, M.D. Phillip E. Bickler, Ph.D. M.D. John W. Severinghaus, M.D.	Hypoxia Research Laboratory
January 25 and 26, 2023		University of California, San Francisco
February 1 and 2, 2023	Phillip E. Bickler, Ph.D. M.D. John R. Feiner, M.D.	San Francisco
April 18 and 19, 2023	36111111.1011,111.12.	

- This document is owned and controlled by Nihon Kohden and is protected by copyright law.
- Use of this document is permitted for personal, non-commercial purposes only.
- Information in this document is true accurate to the best of our knowledge at the time of publication.

SpO₂ Accuracy Study of Nihon Kohden Pulse Oximeters

SpO₂ Accuracy and Specifications

ISO 80601-2-61, the International Standard of pulse oximeter equipment, requires each manufacturer to conduct controlled desaturation studies on human subjects and validate the SpO₂ accuracy in comparison to "gold standard (SaO₂ value)". In the ISO 80601-2-61, the SaO₂ value determined by analyzing arterial blood samples with a CO-oximeter is described as reference, and SpO₂ accuracy of the pulse oximeter equipment is stated in terms of the RMS (root-mean-square) difference between measured value (SpO₂) and reference value (SaO₂). This RMS difference means that two-thirds of the SpO₂ values measured by a pulse oximeter can be expected to fall within the range of RMS.

All pulse oximeters and patient monitors with Nihon Kohden SpO₂ technology are designed and manufactured to meet the same specifications for SpO₂ measurement accuracy. Nihon Kohden SpO₂ accuracy is specified below. These specifications exceed the requirements of ISO 80601-2-61 as noted.

Table 1. Accuracy criteria for SpO₂ measurement

	SaO₂ range	SpO ₂ accuracy (RMS)
Nihon Kohden	80 – 100%	2% or less
Pulse Oximeters	70 – 80%	3% or less
ISO 80601-2-61	70 – 100%	4% or less

Method of Invasive Controlled Desaturation Study on Healthy Volunteers

Hypoxia was induced to different levels of oxyhemoglobin saturation (between 70 - 100%) by having subjects breathe mixtures of nitrogen, room air, and carbon dioxide. Pulse oximeters readings were recorded at the same time as arterial blood sampling, and statistical analysis of differences from SaO2 values by CO-oximeter was performed.

Table 2-1. Background of subjects

		Subject group I	Subject group II
Gender	Male	10	9
Gender	Female	4	3
	Caucasian	7	7
	Asian	1	1
	Indian	3	2
	African	2	0
Ethnicity	Hispanic/Caucasian	1	2
	Hispanic	0	0
	Haitian	0	0
	Multiethnic	0	0
	Black	0	0
Age		21-30	22-30
Clin to a	Very light	6	6
	Olive hue	5	6
Skin tone	Dark Olive	3	0
	Extremely Dark	0	0

Table 2-2. Background of subjects

		Subject group III	Subject group IV	Subject group V
Condor	Male	8	5	7
Gender	Female	3	6	5
	Caucasian	5	3	5
	Asian	3	3	3
	Indian	0	0	0
	African	0	0	2
Ethnicity	Hispanic/Caucasian	0	0	0
	Hispanic	0	1	1
Haitian Multiethnic	Haitian	0	0	0
	Multiethnic	2	3	1
	Black	1	1	0
Age		22-35	22-30	22-47
	I	0	0	1
	II	2	3	1
Skin tone*1, *3	III	4	3	2
	IV	2	4	6
	V	2	0	0
	VI	1	1	2

- The Fitzpatrick skin type (FST) scale is a numerical classification for skin types. It was developed by dermatologist Thomas B. Fitzpatrick to determine how different skin types react to ultraviolet (UV) light (i.e., ability to tan when exposed to sunlight).*2
- *2 Fitzpatrick TB. The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol. 1988;124(6):869-871.
- *3 Subject group: Evaluation date
 - I: March 12-13, 2008
 - II: March 12-13 and April 16, 2008
 - III: January 25 and 26, 2023
 - IV: February 1 and 2, 2023
 - V: April 18 and 19, 2023

Test Results

The accuracy of SpO2 of Nihon Kohden pulse oximeter equipment is represented as the Root-Mean-Square (RMS) of the difference between measured values (SpO2i) and reference values (SaO2i), as given by the following formula.

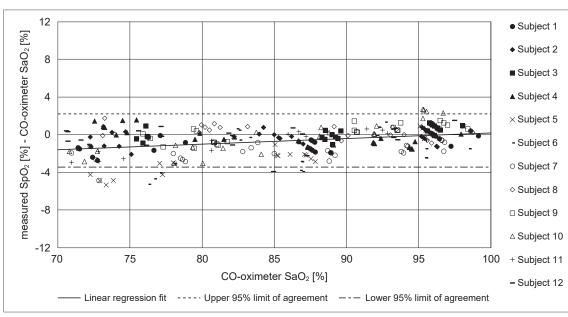
SaO₂: 70-80%, 80-100%

$$A_{rms} = \sqrt{\frac{\sum_{i=1}^{n} (SpO_{2i} - SaO_{2i})^{2}}{n}}$$

Table 3. SpO₂ accuracy test results (RMS difference)

Probe type		SaO₂ range		Subject group
		70 – 80%	80 – 100%	Subject group
Finger Probe	TL-201T	2.13%	1.22%	V
Multi-site Y Probe	TL-260T	1.83%	1.56%	I
Multi-site Y Probe with clip adapter for ear lobe	TL-260T	2.14%	1.62%	II
Disposable SpO ₂ Probe	TL-271T3	1.64%	1.33%	III
Finger Probe	TL-631T3	2.02%	1.43%	IV
Disposable SpO ₂ Probe	TL-535U	1.97%	1.31%	III

A summary for the test result is shown above. The test results show that all tested probes meet the accuracy specifications of ISO 80601 2-61 (SaO2 range: 70-100%) and also Nihon Kohden criteria (SaO₂ range: 70-80%, 80-100%).



TL-201T Finger Probe SpO₂ accuracy

Table 4. Result for TL-201T Bias (SpO₂-SaO₂) Analysis

Probe	TL-201T	
CO-oximeter SaO2 Range	70 – 80%	80 – 100%
Count	86	205
Mean	-1.26%	-0.35%
Standard Deviation	1.74%	1.18%
RMS (Root Mean Square)	2.13%	1.22%

Figure 1. TL-201T Modified Bland-Altman Plot

Pulse Oximeter: OLV-4202

SpO₂ Connection Cord: JL-400T

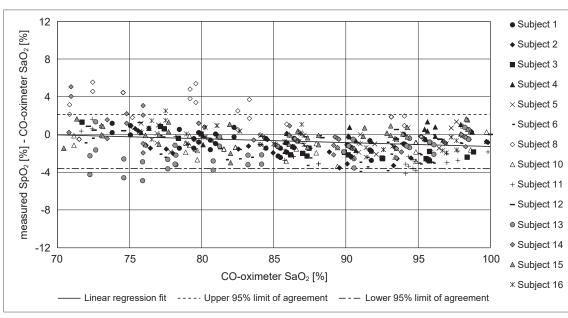

CO-oximeter: ABL90

Table 5. Result for TL-260T Bias (SpO₂-SaO₂) Analysis

Probe	TL-260T		
CO-oximeter SaO2 Range	70 – 80%	80 – 100%	
Count	158	464	
Mean	0.08%	-1.01%	
Standard Deviation	1.84%	1.18%	
RMS (Root Mean Square)	1.83%	1.56%	

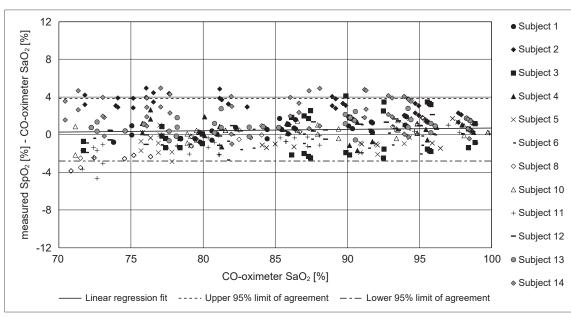
Figure 2. TL-260T Modified Bland-Altman Plot

Pulse Oximeter: OLV-3100

SpO₂ Connection Cable: JL-302T

CO-oximeter: OSM 3

Attachment Tape L: YS-114P6



TL-260T Multi-site Y Probe with Clip Adapter for ear lobe SpO₂ accuracy

Table 6. Result for TL-260T with clip adapter for ear lobe Bias (SpO₂-SaO₂) Analysis

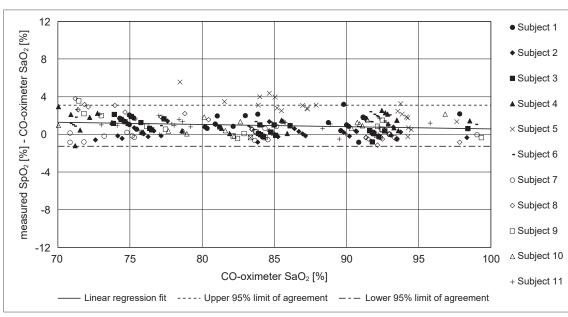
Probe	TL-260T		
CO-oximeter SaO2 Range	70 – 80%	80 – 100%	
Count	136	394	
Mean	0.20%	0.65%	
Standard Deviation	2.14%	1.48%	
RMS (Root Mean Square)	2.14%	1.62%	

Figure 3. TL-260T with clip adapter for ear lobe Modified Bland-Altman Plot

Pulse Oximeter: OLV-3100

SpO₂ Connection Cable: JL-302T TL-260T Clip Adapter: YS-087P9

CO-oximeter: OSM 3



TL-271T3 Adult Disposable SpO₂ Probe SpO₂ accuracy

Table 7. Result for TL-271T3 Bias (SpO₂-SaO₂) Analysis

Probe	TL-27	71T3
CO-oximeter SaO2 Range	70 – 80%	80 – 100%
Count	83	181
Mean	1.18%	0.82%
Standard Deviation	1.15%	1.06%
RMS (Root Mean Square)	1.64%	1.33%

Figure 4. TL-271T3 Modified Bland-Altman Plot

Pulse Oximeter: OLV-4202

SpO₂ Connection Cord: JL-400T

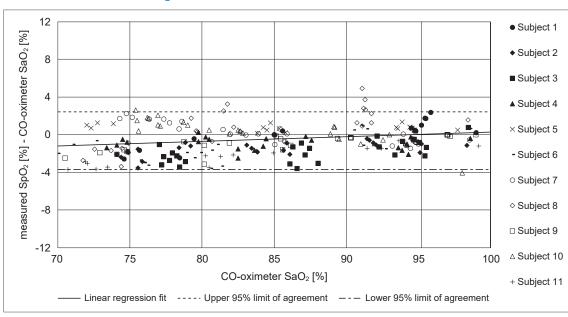

CO-Oximeter: ABL90

Table 8. Result for TL-631T3 Bias (SpO₂-SaO₂) Analysis

Probe	TL-631T3		
CO-oximeter SaO2 Range	70 – 80%	80 – 100%	
Count	84	171	
Mean	-1.01%	-0.42%	
Standard Deviation	1.76%	1.37%	
RMS (Root Mean Square)	2.02%	1.43%	

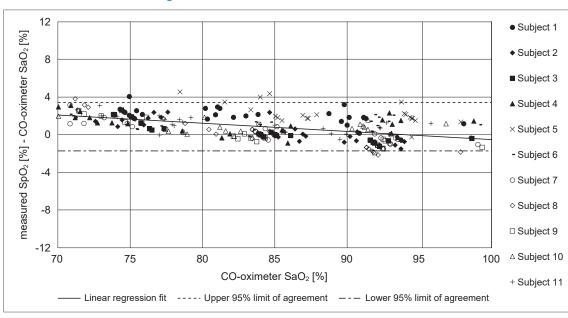
Figure 5. TL-631T3 Modified Bland-Altman Plot

Pulse Oximeter: OLV-4202

SpO₂ Connection Cord: JL-400T

Attachment Tape: YS-111P7

CO-Oximeter: ABL90



TL-535U Disposable SpO₂ Probe SpO₂ accuracy

Table 10. Result for TL-535U Bias (SpO₂-SaO₂) Analysis

Probe	TL-535U		
CO-oximeter SaO2 Range	70 – 80%	80 – 100%	
Count	83	181	
Mean	1.77%	0.44%	
Standard Deviation	0.89%	1.24%	
RMS (Root Mean Square)	1.97%	1.31%	

Figure 7. TL-535U Modified Bland-Altman Plot

Pulse Oximeter: OLV-4202

SpO₂ Connection Cord: JL-400T, JL-030U2

Attachment Tape XL: YS-102P2

CO-Oximeter: ABL90

Pulse Oximeter: Hypoxia Research Laboratory, University of California, San Francisco

1st Edition : 05 August, 2020 3rd Edition : 06 March, 2025

SpO₂ Monitoring Pulse Oximeter Accuracy Study

 $Patient\ Monitoring\ Technical\ Library$

NIHON KOHDEN CORPORATION

1-31-4 Nishiochiai, Shinjuku-ku, Tokyo 161-8560, Japan Phone +81 (3) 5996-8036 Fax +81 (3) 5996-8100

SpO ₂ Monitoring
Pulse Oximeter Accuracy Study